Le metastasi seguono le stesse dinamiche di una folla in movimento all’interno di spazi angusti. Uno studio dell’ISFOM e dell’Università di Milano

Uno studio italiano condotto dall’IFOM e dall’Università degli Studi di Milano e pubblicato in questi giorni su Nature Materials ha dimostrato, grazie all’integrazione tra biologia molecolare e fisica dei materiali, che la capacità o meno delle cellule di migrare collettivamente, e quindi delle cellule tumorali di generare metastasi, dipende strettamente dai fattori di densità e di fluidità. Si tratta di un’acquisizione fondamentale soprattutto per la metastatizzazione di tumori solidi e individuare la chiave per bloccare la “folla” cellulare potrebbe fornire la chiave per ridurne la diffusione nell’organismo agendo su specifici target terapeutici.

 Le cellule si spostano in gruppo, secondo una modalità collettiva coordinata, come una folla che si accalca nell’angusto tunnel di una stazione di metropolitana nell’ora di punta e riesce a transitare in modo fluido solo se confluisce in un flusso di corrente compatto e ordinato. Analogamente, le cellule adottano la migrazione collettiva come strategia di movimento principale nella formazione dei tessuti durante lo sviluppo dell’embrione così come nell’organismo adulto, passando dallo stato liquido a solido e viceversa, a seconda dalla necessità. La transizione da uno stato fluido a solido è necessaria per sviluppare, ad esempio, la proprietà cellulare di barriera tra l’esterno e l’interno in un tessuto e, al contrario, acquisire uno stato fluido può permettere a un tessuto di rimodellarsi, come nel caso di riparazione delle ferite. Mentre diventando solido un tessuto diventa immobile e refrattario allo sviluppo di tumori, transitare allo stato fluido ne facilita la plasticità, che in situazioni patologiche può essere sfruttata per facilitarne la disseminazione come nella metastatizzazione dei tumori solidi, i più diffusi nell’essere umano. Pressoché tutti i tessuti epiteliali e i tumori solidi si spostano difatti in modo collettivo, ottenendo così maggiore efficacia nell’invadere l’organismo attraverso tessuti interstiziali e nell’ingenerare quindi tumori a distanza. Le leggi che governano il movimento multicellulare e la transizione tra stato solido e liquido sono ancora scarsamente conosciute, così come lo sono le basi molecolari e biochimiche che le controllano. Uno studio pubblicato in questi giorni su Nature Materials a cura di Giorgio Scita, responsabile dell’unità di ricerca “Meccanismi di migrazione delle cellule tumorali” presso IFOM e professore all’Università degli Studi di Milano, e di Roberto Cerbino, professore di Fisica Applicata sempre nell’Ateneo milanese, ha segnato un passo avanti nella comprensione di questi meccanismi, grazie ad un approccio di ricerca integrato tra biologia e fisica dei materiali. “Nel corso degli ultimi anni – spiega Scita – è emerso come lo sviluppo di un tumore sia caratterizzato oltre che da alterazioni genetiche anche da complesse e dinamiche interazioni fisiche che le cellule tumorali stabiliscono tra di loro e con il tessuto circostante. Le forze che tengono unite le singole cellule per muoversi in modo coordinato, come le cellule comunicano tra di loro, come passano dallo stato solido a liquido e viceversa sono aspetti altrettanto importanti ma ancora oscuri, che stiamo cercando di chiarire grazie all’aiuto dei colleghi fisici.”

Per comprendere le dinamiche comportamentali delle cellule all’interno di un tessuto epiteliale, il team di Cerbino lo ha trattato come fosse un materiale costituito da particelle inerti. “Ad una bassa densità – spiega Cerbino – le particelle si spostano inizialmente in modo disordinato e caotico, con una mobilita fluida, molto simile a quella delle molecole dell’acqua. Aumentando la densità il grado di libertà di ciascuna particella è limitata e il sistema va incontro an una transizione che in fisica è proprio di un liquido che diventa vetroso e solido a seguito di un raffreddamento repentino.”

Per interpretare il comportamento delle cellule, che inerti però non sono, i fisici dei materiali hanno utilizzato un modello bidimensionale in cui le cellule sono trattate come dei poligoni irregolari e in cui la loro interazione viene determinata dalla forma che adottano, a sua volta descritta da parametri semplici come il perimetro e l’area di ognuna. “Nel modello sviluppato – continua Cerbino – abbiamo integrato questa descrizione geometrica, con un meccanismo in grado di riprodurre la capacità che le cellule manifestano in particolari condizioni patologiche di migrare collettivamente, ovvero di orientare in modo coerente e su larga scala la direzione di movimento di ogni singola cellula rispetto alla propria vicina. Si tratta di un meccanismo di feedback del tutto simile a quello che spiega il moto collettivo degli stormi di uccelli o del movimento delle folle in situazioni di emergenza. I nostri risultati suggeriscono che, sorprendentemente, quando una particolare proteina è presente in modo superiore al dovuto, questo meccanismo geometrico agisce in modo molto efficiente favorendo moti cellulari collettivi.”

(Fonte: Ufficio Stampa
Università degli Studi di Milano)