Le reti del sistema immunitario da una prospettiva di meccanica statistica

di Elena Agliari & Adriano Barra.

Nelle ultime decadi abbiamo assistito all’intensificarsi della sinergia tra biologi, fisici e matematici, al fine di adattare ed estendere tecniche e modus operandi, sviluppati in ambiti tradizionalmente fisici, alla descrizione e alla comprensione della complessità biologica, densamente evidenziata dai potenti mezzi sperimentali di cui oggi tutte le branche della moderna Biologia dispongono: in queste note informali bramiamo mostrare al lettore quali nuove domande e nuove prospettive alcuni di questi approcci (e.g. sistemici) permettano di far germogliare su un terreno di studio biologicamente “classico” come il sistema immunitario.

In un articolo divulgativo che intende introdurre alcuni importanti concetti in questo settore (con particolare attenzione al cruciale ruolo coperto dalla ricerca scientifica di area romana, che vogliamo porre in evidenza poiché le recenti ricerche degli autori -inerentemente la complessità del sistema immunitario- si sono formate e svolte lì) è bene spendere qualche parola per mettere in luce le due principali filosofie di approccio al problema che si sono storicamente sviluppate all’interno della Scienza nello scorso secolo.

Da un lato troviamo la “biofisica classica”, promossa da Mario Ageno e Giorgio Careri negli anni ’70 e ’80 nel Dipartimento di Fisica di Sapienza Università di Roma (d’ora in poi riferito come Istituto), la quale contribuisce a spiegare fenomeni biologici seguendo un approccio riduzionista in cui (idealmente) si considerano i dettagli specifici di tutti i singoli elementi coinvolti nel processo di volta in volta sotto esame e “si integra deterministicamente la miriade di equazioni del moto” (in modi altamente non banali, e.g., mediante tecniche numeriche che hanno dato vita alla Dinamica Molecolare, di cui Giovanni Ciccotti, Professore Emerito di Struttura della Materia nell’Istituto, ne rappresenta uno dei padri fondatori).

Dall’altro lato troviamo la Teoria dei Sistemi Complessi, un approccio non conflittuale ma complementare al primo, che trae origine dalla fusione della Meccanica Statistica (in particolare dei Sistemi Disordinati) -disciplina cardine in Fisica Teorica- con la Teoria delle Reti (che è invece una disciplina la cui genesi è dovuta prevalentemente ai Matematici): in questo approccio, di natura intrinsecamente probabilistica, si trascurano i dettagli microscopici delle interazioni locali all’interno del sistema che si vuole studiare, e si cerca di analizzare una versione idealizzata dello stesso, nella sua interezza, alla ricerca di proprietà emergenti (cioè non immediatamente deducibili guardando la fenomenologia di un singolo elemento che compone il sistema nel suo complesso): per esempio, per comprendere alcuni aspetti della transizione di fase tra lo stato liquido e quello gassoso di una mole d’acqua quando, posta in contatto con una sorgente di calore, la sua temperatura attraversa quella critica (di ebollizione in questo caso), seguendo il secondo approccio, non ci si preoccupa dei dettagli microscopici della particolare molecola in esame, ma ci si chiede cosa succede alle proprietà statistiche di un numero enorme di queste molecole, tra loro interagenti ed opportunamente stilizzate, quando la sua temperatura viene fatta variare. Va sottolineato che per comprendere che una mole d’acqua cambia stato quando i suoi parametri di controllo (temperatura in questo caso) attraversano valori critici, non è necessario risolvere in ogni dettaglio le caratteristiche di una singola molecola d’acqua, poiché questi fenomeni derivano dal “barcamenarsi’’ di un numero enorme di molecole tra interazioni reciproche (per minimizzare l’energia) ed agitazione termica (per massimizzare l’entropia). Si noti inoltre che il concetto di cambiare stato (i.e. dal liquido al gassoso) non ha neanche senso per la singola molecola (non è cioè una proprietà rilevabile a quel livello descrittivo, ma una proprietà emergente di un cospicuo insieme di molecole). D’altronde, se avessimo usato un altro liquido invece dell’acqua per questo esempio, probabilmente sarebbe cambiato il valore numerico della temperatura critica, ma prima o poi anche questo avrebbe transito verso un comportamento gassoso, preservando molto della fenomenologia della transizione valida per l’acqua (questa similarità comportamentale forma un concetto che va sotto il nome di Universalità in Meccanica Statistica). Noi ci muoveremo all’interno del secondo approccio, cercando cioè di vedere il sistema immunitario come un insieme di reti complesse costituite da un gran numero di elementi in interazione tra loro, e ci interrogheremo sulle possibili proprietà emergenti che tali reti eventualmente mostrano, mentre -per completezza- rimandiamo al celebre libro di Nowak e May e/o all’eccellente review di Perelson e Weisbuch per una trattazione esaustiva tramite la prima metodologia (i.e. sistemi di equazioni differenziali accoppiate) [1].

I sistemi complessi: vetri di spin e reti neurali

Prima di raccontare alcuni aspetti dei fenomeni collettivi che si riscontrano nelle reti del sistema immunitario, è importante almeno menzionare i due concetti cardine che riteniamo fondamentali in questo tipo di approccio alla comprensione della complessità biologica, cioè i “vetri di spin” e le “reti neurali”.

Il primo è la profonda pittura (chiamata rottura di simmetria di replica, i.e. RSB [replica symmetry breaking], sviluppata a cavallo tra la fine degli anni ’70 e l’inizio degli anni ’80 da Giorgio Parisi, Decano dell’Istituto) ottenuta mediante la Meccanica Statistica inerentemente il comportamento a bassa temperatura dei vetri di spin (in approssimazione di campo medio). Tralasciando i tecnicismi, questi vetri di spin sono modelli termodinamici di reti completamente connesse, in cui su ogni nodo è posto uno spin (i.e., una variabile Booleana, cioè una variabile che può assumere solo valori dicotomici: +1 o -1) e questi spin interagiscono tutti con tutti mediante interazioni di coppia rapprsentate dagli archi che li connettono (o meglio che connettono i nodi sui quali gli spin vivono), i quali -crucialmente- possono avere intensità sia positiva (cosa che favorisce l’allineamento dei due spin che formano la coppia connessa dall’arco) sia negativa (favorendo il disallineamendo degli spin della coppia in questione). Un tale sistema, detto frustrato poiché il singolo spin può ricevere istruzioni confluttuali inerentemente il suo orientamento, funziona da oscillatore armonico (i.e., da archetipo) per i sistemi complessi poiché manifesta una dinamica frastagliata su un gran numero di scale di tempo, ha un’energia libera il cui numero di minimi è funzione crescente del numero di spin che formano il sistema e l’organizzazione spontanea dei suoi stati termodinamici è gerarchica: un paradigma piuttosto lontano da quello dei sistemi semplici, che tipicamente hanno una dinamica con un rilassamento termico che ha una sola scala caratteristica, un’energia libera con un numero di minimi che non scala con il numero di spin e non c’è alcuna organizzazione tra i suoi (esigui) stati termodinamici. Per dare un’idea di quanto innovativa fosse la teoria RSB all’epoca, dalla sua formulazione originale semi-euristica alla sua dimostrazione matematicamente rigorosa (ottenuta grazie ai contributi fondamentali apportati da Francesco Guerra, anche quest’ultimo Professore Emerito dell’Istituto) sono passati 25 anni (il lettore interessato può trovare ulteriori informazioni in [2]).

Il secondo concetto, fortemente correlato al primo (nel senso che il primo -il vetro di spin- sancisce i caratteri generali del sistema complesso tipico, mentre ora ne scegliamo uno in particolare), ma che merita menzione a se stante (specialmente in queste note dedicate al sistema immunitario), è il quadro di rete neurale (uno dei più famosi ed interessanti modelli di vetro di spin) dipinto da Daniel Amit (Ordinario di Fisica Teorica presso l’Istituto, quando era in vita) ed i suoi collaboratori, nella loro rappresentazione meccanico statistica del modello di rete associativa introdotto da John Hopfield negli anni ’80 (che, a sua volta, formalizzava l’idea di apprendimento sinaptico proposta da Donald Hebb nei primi anni ’50 e che, in ultima istanza, affondava le sue radici nella teoria dei riflessi condizionati di Ivan Pavlov, di cui Hebb fu studente): questo modello voleva offrire una spiegazione sistemica inerentemente i meccanismi cardine della formazione della memoria associativa nel cervello, facendola emergere come proprietà termodinamicamente spontanea, inevitabile risultato del tumultuoso e caotico interagire di un enorme numero di oggetti relativamente semplici (i.e. i neuroni), ma densamente connessi tra loro ed in maniera frustrata e non-lineare (i.e. mediate sinapsi eccitatorie e sinapsi inibitorie), che Amit era solito chiamare assemblee neuronali. In questo contesto gli spin posti sui nodi del grafo mimano dei neuroni elementari rappresentati come interruttori ON/OFF, i quali possono emettere spikes -impulsi elettrici- (i.e. spin up/interruttore ON) o rimanere quiescienti (i.e. spin down/interruttore OFF) in funzione degli stimoli che a loro afferiscono, e poiché le sinapsi che collegano i vari neuroni (e quindi giocano il ruolo di archi da una prospettiva di teoria dei grafi) possono essere sia eccitatorie (i.e. archi ad intensità positiva) che inibitorie (i.e. archi ad intensità negativa), le reti neurali sono particolari realizzazioni di vetri di spin, che effettivamente ben si prestano a spiegare la memoria associativa come comportamento emergente, cioè come memoria distribuita (il lettore interessato può trovare ulteriori informazioni in [3], qui per semplicità abbiamo condensato tutta la struttura dell’arco [dendriti, assone, etc.] nell’unico termine “sinapsi” per semplicità). Può essere utile ricordare che, in tempi passati (significativamente prima della rivoluzione culturale dello scorso secolo), questa prospettiva era del tutto assente nel pensiero scientifico canonico (ancora estensivamente dominato dal riduzionismo), secondo il quale invece, il singolo neurone era già in sè un oggetto “intelligente” e quindi non vi era mistero nella genesi delle proprietà intellettive superiori del cervello. Sin dai pioneristici esperimenti di Purkyne, sappiamo invece che il singolo neurone è un oggetto piuttosto elementare (squisitamente dal punto di vista della trasmissione d’informazione ovviamente), assimilabile ad un sommatore o ad un circuito integratore a soglia -per declinarlo in un vocabolario di ingegneria elettronica- cioè un oggetto decisamente di bassa complessità: questo implicava quindi che le capacità superiori del cervello non fossero intrinseche nei suoi costituenti elementari, ma dovevano originarsi a livello più alto, motivando sia una trattazione sistemica (i.e. mediante la meccanica statistica) delle reti neurali, sia (congiuntamente al concetto di universalità precedentemente introdotto) la rozza (ma matematicamente comoda) schematizzazione del neurone come un elemento a due stati. È giusto menzionare che questa trattazione sistemica della rete neurale ha giocato anche un ruolo di primo piano nella moderna intelaiatura dell’Intelligenza Artificiale.

Infine, per la modellistica di alcuni aspetti del sistema immunitario a cui queste note sono dedicate, è di particolare rilievo la recente scoperta (riassunta in tre lettere [4] ed alcuni lavori estesi [5]) che vetri di spin su grafi bipartiti (cioè composti da diversi tipi -partiti- di spin) si comportano come reti associative su un solo grafo simili a quella di Hopfield. Infatti, come vedremo, una parte del sistema immunitario (la risposta adattiva) può essere descritta come un vetro di spin a due partiti (cioè un vetro di spin su un grafo bipartito), in cui ogni partito corrisponde ad un diversa branca cellulare (i.e. branca coordinatrice e branca effettrice), e quindi -grazie all’analogia appena sancita- il sistema nel suo insieme gode di proprietà intellettive superiori simili a quelle emergenti nel cervello: il sistema immunitario è per esempio in grado di decidere, in base ad un opportuno apprendimento, quale sia la migliore strategia di difesa da intraprendere in funzione dello stimolo antigenico presente, di memorizzare (sia i patogeni incontrati che le strategie intraprese che hanno avuto successo), di fare riconoscimento dell’antigene (i.e. “pattern recognition”) cioè riconoscimento di alcuni segmenti proteici appartenenti al patogeno da eliminare, ma anche delle cellule self (cioè proprie) da salvaguardare. In seguito (da una prospettiva cibernetica) proveremo ad evidenziare profonde analogie funzionali e comportamentali tra le reti neurali e le reti linfocitarie, e, parimenti, cercheremo anche di metterne in risalto cruciali differenze che, di nuovo, sono sia funzionali sia comportamentali.

Il sistema immunitario: reti chimiche in sintesi

In una prima -minimale- descrizione, il sistema immunitario dei mammiferi è un insieme di cellulle (linfociti, macrofagi, etc.) e messageri chimici (citochine, immunoglobuline, etc.), atto a salvaguardare il corpo ospitante dall’invasione di patogeni (i.e. batteri, virus, funghi, etc.) e dalla proliferazione incontrollata di cellule autoctone sregolate (i.e. patologie neoplastiche).

Si distingue tra la risposta immunitaria innata e quella adattiva: la prima è una risposta più semplice, operata da macrofagi, basofili, eosinofili, neutrofili e monociti, mentre la seconda è una risposta complessa (in grado addirittura di adattarsi all’evoluzione dei parassiti nel tempo) ed è operata esclusivamente dai linfociti.

Restringendo ancora, in queste note divulgative ci focalizzeremo solamente sulla risposta adattiva (quindi solo sui linfociti), al fine di provare a capire quali comportamenti emergenti le reti di linfociti possano manifestare.

In prima approssimazione possiamo ulteriormente evidenziare, all’interno della risposta adattiva, due branche principali: la branca coordinatrice, composta da linfociti T helpers e T suppressors, e la branca effettrice, composta da linfociti T killer e linfociti B. Le lettere che accompagnano gli aggettivi dei linfociti, T e B, stanno ad indicare la loro provenienza: i linfociti T si formano nel timo (Thymus in Inglese), mentre i linfociti B si formano nel midollo osseo (Bone marrow in Inglese). Come vedremo, invece, gli aggettivi che accompagnano le lettere designano la funzione che questi hanno all’interno del sistema immunitario (i.e. gli helpers stimolano la proliferazione e l’attivazione di opportuni soldati della branca effettrice, mentre i suppressors la inibiscono).

Per quanto riguarda la branca effettrice, poiché il patogeno può fondamentalmente trovarsi o annidato all’interno di una cellula del corpo ospite o essere libero all’esterno di tutte le cellule (per esempio può diffondere attraverso il sistema linfatico), abbiamo bisogno di un’arma per combattere il patogeno dentro le cellule e di un’arma per combattere il patogeno fuori dalle cellule: i linfociti T killer uccidono per lisi le cellule infette (e sono quindi i responsabili inerentemente il primo punto), mentre i linfociti B sono incaricati della produzione di anticorpi. Questi ultimi sono particolari proteine che le cellule B (una volta attivate) secernono copiosamente (un solo linfocita B può arrivare a produrre più di 1000 anticorpi al secondo!) e, diffondendo a loro volta nel sistema linfatico, queste proteine sono in grado di legarsi chimicamente all’antigene del patogeno libero al fine di renderlo chimicamente inerme e maggiormente visibile ai macrofagi per la rimozione.

Ma come questi linfociti riconoscono l’antigene e non attaccano (quasi) mai le nostre cellule sane o le nostre proteine?

Il corpo di un uomo adulto ospita decine di miliardi di cellule B (e lo stesso vale grossomodo per le cellule T). Queste cellule esprimono un particolare recettore di membrana, chiamato B-cell-receptor (BCR, ed analogamente TCR per i linfociti T) il quale riconosce -cioè mostra altissima affinità di legame per- un determinato peptide, ad esempio un segmento di una proteina di virus (i.e. l’antigene): si usa spesso la metafora della chiave-serratura per descrivere l’interazione anticorpo-antigene.

A riposo, cioè nella (irrealistica) situazione di assenza di infezione, ogni uomo ha circa 100/1000 cellule B che esprimono il medesimo recettore (i.e., condividono lo stesso BCR e sono quindi funzionalmente identiche) e l’insieme di queste cellule è detto clone linfocitario. Quindi esistono centinaia di milioni (se non miliardi) di differenti cloni linfocitari all’interno di un sistema immunitario umano a riposo e questi formano il repertorio (cioè l’insieme di tutte le diverse armi a disposizione in un corpo in un dato istante). Si noti che il repertorio potenziale è all’atto pratico infinito e solo un’esigua parte di questo forma il repertorio espresso di un individuo, cioè l’insieme di cloni di cui stiamo parlando: la continua esposizione dell’ospite alla variabilità patogenica della realtà che attraversa fà si che i cloni che non servono vengano tenuti a bassa popolosità cellulare o addirittura soppressi (i.e. questi linfociti, se non stimolati su una scala temporale opportuna, sono soggetti ad apoptosi) e lascino il posto a nuovi cloni potenzialmente di concreto impiego contingente. Questa continua ristrutturazione del repertorio clonale avviene a livello genetico, mediante un processo di randomizzazione dell’impiego dei geni coinvolti nella formazione dei BCR e dei TCR, chiamato V(D)J-recombination il quale assicura un’enorme gamma di possibili recettori contro i patogeni esterni, ma tende ad eliminare i recettori self cioè quei recettori aberranti che -essendo formati casualmente- sono stati involontariamente costruiti per aggredire una cellula autoctona.

Semplificando ulteriormente, quando un virus penetra la barriera epiteliale e viene notato dalla difesa primaria, opportune cellule (e.g. dendritiche, ma anche gli stessi linfociti B, come nell’esempio di Figura 1) chiamate antigen presenting cells incamerano il patogeno e ne espongono frammenti (epitopi antigenici) sulla propria membrana cellulare che successivamente mostrano ai vari soldati dei vari cloni linfocitari nei linfonodi: se un clone ha alta affinità di legame per quel peptide (cioè se il BCR delle sue cellule ed il peptide antigenico bene si combinano secondo la metafora della chiave-serratura), previa autorizzazione dalla branca coordinatrice mediante citochine di elicitazione secrete dai linfociti T-helper (che discuteremo a breve), inizia l’espansione clonale, il clone cioè inizia ad espandersi (i.e. le sue cellule iniziano a duplicarsi dando luogo ad un processo moltiplicativo) ed a secernere anticorpi, sbilanciando quindi la distribuzione clonale a suo favore (Figura 2). Quando l’infezione è eradicata, l’assenza di ulteriore stimolo, sinergicamente a segnali di quiescenza -citochine inibitorie- secreti dai linfociti T-suppressor, induce l’esubero di cellule B ad andare in apoptosi e l’ordine viene ripristinato.

Da questa descrizione grossolana di una risposta adattativa elementare appare manifesto il grado di alta interazione e coordinazione che è richiesto ai vari tipi cellulari al lavoro.

(… segue …)

Leggi l’articolo completo: Elena Agliari & Adriano Barra, Le reti del sistema immunitario da una prospettiva di meccanica statistica, in Scienze e Ricerche n. 34, 1° agosto 2016, pp. 59-66